Stochastic elliptic multiscale PDES
نویسنده
چکیده
In this paper Monte Carlo Finite Element (MC FE) approximations for elliptic homogenization problems with random coefficients which oscillate on n ∈ N a-priori known, separated length scales are considered. The convergence of multilevel MC FE (MLMC FE) discretizations is analyzed. In particular, it is considered that the multilevel FE discretization resolves the finest physical length scale, but the coarsest FE mesh does not, so that the socalled “resonance” case occurs at intermediate MLMC sampling levels. It is proved that switching to an Hierarchic Multiscale Finite Element method such as the Finite Element Heterogeneous Multiscale method (FE–HMM) to compute all MLMC FE samples on meshes which under-resolve the physical length scales implies once more optimal efficiency (in terms of accuracy versus computational work) for the numerical estimates of statistical moments with first and second order FE–HMMs. Specifically, the method proposed here allows to obtain estimates of the expectation of the random solution, with accuracy versus work that is identical to the solution of a single deterministic problem obtained by a FE–HMM, and which is, moreover, robust with respect to the physical length scales. Numerical experiments corroborate our analytical findings.
منابع مشابه
Multiscale Modeling of Fluctuations in Stochastic Elliptic Pde Models of Nanosensors∗
In this work, the multiscale problem of modeling fluctuations in boundary layers in stochastic elliptic partial differential equations is solved by homogenization. A homogenized equation for the covariance of the solution of stochastic elliptic PDEs is derived. In addition to the homogenized equation, a rate for the covariance and variance as the cell size tends to zero is given. For the homoge...
متن کاملCluster-based Generalized Multiscale Finite Element Method for elliptic PDEs with random coefficients
We propose a generalized multiscale finite element method (GMsFEM) based on clustering algorithm to study the elliptic PDEs with random coefficients in the multiquery setting. Our method consists of offline and online stages. In the offline stage, we construct a small number of reduced basis functions within each coarse grid block, which can then be used to approximate the multiscale finite ele...
متن کاملA Multiscale Data-Driven Stochastic Method for Elliptic PDEs with Random Coefficients
In this paper, we propose a multiscale data-driven stochastic method (MsDSM) to study stochastic partial differential equations (SPDEs) in the multiquery setting. This method combines the advantages of the recently developed multiscale model reduction method [M. L. Ci, T. Y. Hou, and Z. Shi, ESAIM Math. Model. Numer. Anal., 48 (2014), pp. 449–474] and the datadriven stochastic method (DSM) [M. ...
متن کاملExploring the Locally Low Dimensional Structure in Solving Random Elliptic PDEs
We propose a stochastic multiscale finite element method (StoMsFEM) to solve random elliptic partial differential equations with a high stochastic dimension. The key idea is to simultaneously upscale the stochastic solutions in the physical space for all random samples and explore the low stochastic dimensions of the stochastic solution within each local patch. We propose two effective methods ...
متن کاملMultilevel Monte Carlo Methods for Stochastic Elliptic Multiscale PDEs
In this paper Monte Carlo Finite Element (MC FE) approximations for elliptic homogenization problems with random coefficients which oscillate on n ∈ N a-priori known, separated length scales are considered. The convergence of multilevel MC FE (MLMC FE) discretizations is analyzed. In particular, it is considered that the multilevel FE discretization resolves the finest physical length scale, bu...
متن کاملA Finite Element Heterogeneous Multiscale Method with Improved Control over the Modeling Error
Multiscale partial differential equations (PDEs) are difficult to solve by traditional numerical methods due to the need to resolve the small wavelengths in the media over the entire computational domain. We develop and analyze a Finite Element Heterogeneous Multiscale Method (FE-HMM) for approximating the homogenized solutions of multiscale PDEs of elliptic, parabolic, and hyperbolic type. Typ...
متن کامل